Assessment of CO2 Emission by Tractor Engine at Varied Control Settings of Fuel Unit

Main Article Content

Jacek Wasilewski
Joanna Szyszlak-Bargłowicz
Grzegorz Zając
Małgorzata Szczepanik

Abstract

The paper presents results of experimental studies concerning CO2 emission of S-4003 diesel engine Ursus C-360 at a variable fuel injection advance angle and opening pressure of injectors. Measurements were made on the dynamometric stand on the test bench. The engine operated according to the load characteristic at two characteristic rotational speeds i.e., at the maximum torque velocity (1600 rpm) and at the rated speed (2200 rpm). In each measurement point of load characteristics, CO2 concentration was measured in exhaust gases with the use of exhaust gases analyser M-488 Multigas Plus. For a more detailed analysis of the CO2 content in exhaust gases, additional change of O2 level emission was presented, which in the biggest amount combines elementary carbon included in fuel during combustion. The studies showed the CO2content reduction in exhaust gases at the reduced (by 3º of crankshaft rotations) fuel injection advance angle in comparison to the nominal angle by 4.5% at the rotational speed of 1600 rpm and by 5.7% at the speed of 2200 rpm (the average values for all measurement points of load - brake horsepower of engine). Similarly, CO2 concentration decrease in exhaust gases of the investigated engine was reported for the increased (by 1.5 MPa) opening pressure of injectors in comparison to the nominal pressure, on average by 9.8% for the speed of the maximum rotational moment and by 4.5% for the rated speed.

Article Details

How to Cite
Wasilewski, J., Szyszlak-Bargłowicz, J., Zając, G., & Szczepanik, M. (2021). Assessment of CO2 Emission by Tractor Engine at Varied Control Settings of Fuel Unit. Agricultural Engineering , 24(4), 105-115. Retrieved from https://agriceng.ptir.org/index.php/AgricEng/article/view/265
Section
Articles

References

Ağbulut, Ü., Ayyıldız, M., Sarıdemir, S. (2020). Prediction of performance, combustion and emission characteristics for a CI engine at varying injection pressures. Energy, 197, 117257.

Arshad, M., Zia, M. A., Shah, F. A., Ahmad, M. (2018). An Overview of Biofuel, in Perspectives on Water Usage for Biofuels Production: Aquatic Contamination and Climate Change, Arshad, M. (ed.). Springer International Publishing, Cham.

Burski, Z., Wasilewski, J. (2016). Antropotechnika pojazdu w eksploatacji polowej i transporcie żywności. WUP w Lublinie, Lublin, Poland. ISBN 978-83-7259-242-2

Chłopek, Z. (2009). The balance of the pollutant emission from engines of city buses. Transport Samochodowy, 3, 55-70.

Górski, D., Radziewicz, B. (2020). Counteracting excessive CO2 emissions in truck transport. Academy of Management, 4(2), 118-130.

Jiaqiang, E., Pham, M., Deng, Y.W., Nguyen, T., Duy, V., Le, D., Zuo, W., Peng, Q., Zhang, Z. (2018). Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends. Energy, 149, 979-989.

KOBIZE. (2020). Krajowy Raport Inwentaryzacyjny 2017-2020. Warszawa. Poland

Kousoulidou, M., Fontaras, G., Ntziachristos, L., Samaras, Z. (2010). Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel, 89(11), 3442-3449.

Kowalek, S. (2014). Wpływ ciśnienia wtrysku paliwa na toksyczność spalin silnika z zapłonem samoczynnym. Autobusy : technika, eksploatacja, systemy transportowe, 15(6), 163-165.

Kowalek, S. (2016). Wpływ kąta wyprzedzenia wtrysku na emisję toksycznych składników spalin silnika z zapłonem samoczynnym. Autobusy: technika, eksploatacja, systemy transportowe, 17(8), 106-107.

Kumar, S., Dinesha, P., Rosen, M. A. (2019). Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy, 185, 1163-1173.

Kuranc, A. (2006). Zastosowanie diagnostycznego analizatora spalin typu NDIR do pomiaru emisji spalin silnika o zapłonie samoczynnym. Inżynieria Rolnicza 10, 385–393.

Li, P., Zhu, J., Wu, W. (2019). Effect of Fuel Injection Advance Angle on Combustion and Emissions of Dual Fuel Compression Ignition Engine, in Application of Intelligent Systems in Multi-modal Information Analytics, Sugumaran V., Xu Z., P. S., Zhou H. (eds.) MMIA 2019. Advances in Intelligent Systems and Computing, vol 929. Springer, Cham.

Moneo, M., Iglesias, A. (2004). Climate changes and agriculture. Universidad Politécnica de Madrid, Madryt.

Pawlak, J. (2017). The level and structure of greenhouse gas emission in agriculture. Problems of Agricultural Engineering, 25(4), 55-63.

Silitonga, A. S., Hassan, M. H., Ong, H. C., Kusumo, F. (2017). Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas bio-diesel-diesel blends using kernel-based extreme learning machine. Environmental Science and Pollution Research, 24(32), 25383-25405.

Wasilewski, J., Krzaczek, P. (2014). Emission of toxic compounds from combustion of biodiesel. A raport from studies. Przemysł Chemiczny, 93(3), 343–346.

Zając, G., Węgrzyn, A. (2008). Analysis of work parameters changes of diesel engine powered with diesel fuel and FAEE blends. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 38(2), 17-24.