Evaluation of the Impact of Tractor Field Works on Changes in Selected Elements of Engine Oils
Main Article Content
Abstract
Tractors are used for various types of field work, as well as for transport on public roads, in difficult and changing environmental conditions. The main goal of the study was to analyze the changes of trace elements in engine oil during various field works. For this purpose, engine oils from two tractors were selected for the study. These tractors were coupled with: a cultivator, a reversible plow, a tillage-sowing unit, and a trailer. The samples were taken at the beginning and after the field work with a given unit was completed. The instrumental chemical analysis method HDXRF was used to determine changes in the content of the trace elements: Cr, Cu, Fe, Pb, Ni, Ca, P, Zn, and Mo in the engine oil. The comparison of oil from tractors coupled with various agricultural machines allowed the conclusion that the distribution of the consumption of tested metals, as well as the concentrations of individual elements, differed significantly depending on the coupled machine. The research showed that agricultural treatments with a cultivator caused the highest percentage of wear-induced changes in the content of metal elements such as Cr, Cu, and Pb. On the other hand, the operation of a tractor coupled with a tillage-sowing unit resulted in the vehicle’s accelerated wear.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Chmielewski, Z. (2017). Stany niezawodnościowe oleju silnikowego w eksploatacji. Autobusy: technika, eksploatacja, systemy transportowe, 18, 761-764.
Förster, E., Fraenza, C. C., Küstner, J., Anoardo, E., Nirschl, H., Guthausen, G. (2019). Monitoring of engine oil aging by diffusion and low-field nuclear magnetic resonance relaxation. Measurement, 137, 673-682.10.1016/j.measurement.2019.02.019
Gołębiowski, W., Zając, G., Wolak, A. (2018). Zawartość metali w olejach silnikowych z ciągników rolniczych (Contents of metals in engine oils from agricultural tractors). Przemysł Chemiczny, 97(5), 696-699.
Gołębiowski, W., Zając, G. (2020). Impact assessment of farm tractor engine fuel injector damage on engine oil properties. Agricultural Engineering, 24(2), 65-75.10.1515/agriceng-2020-0018
Grimmig, R., Lindner, S., Gillemot, P., Winkler, M., Witzleben, S. (2021). Analyses of used engine oils via atomic spectroscopy – Influence of sample pre-treatment and machine learning for engine type classification and lifetime assessment. Talanta, 232, 122431.10.1016/j.talanta.2021.122431
Holloway, M. (2007). The Oil Analysis Handbook: A Comprehensive Guide to Using and Understanding Oil Analysis. NCH Corporation: Irving, TX, USA.
Hönig, V., Procházka, P., Obergruber, M., Kučerová, V., Mejstřík, P., Macků, J., Bouček, J. (2020). Determination of Tractor engine oil change interval based on material properties. Materials, 13(23), 5403.10.3390/ma13235403
Hurtová, I. (2020). Hodnocení karbonového znečištění motorových olejů. Perner’s Contacts, 15(2), 1652.10.46585/pc.2020.2.1652
Hurtová, I., Sejkorová, M. (2016). Analysis of engine oils using modern methods of tribotechnical diagnostics. Perner´ s Contacts, 11(4), 47-53.
Kaszkowiak, J., Borowski, S., Dulcet, E., Zastempowski, M. (2015). Analiza uszkodzeń turbosprężarek. Logistyka, 4, 1885-1892.
Lotko, W., Longwic, R., Górski, K., Sander, P., Durczak, T. (2015). Analiza przyczyn uszkodzeń turbosprężarek samochodowych. TTS Technika Transportu Szynowego, 22, 1833-1836.
Malinowska, M. (2014). Analiza zanieczyszczeń oleju silnikowego stosowanego w silniku Cegielski-Sulzer 3AL25/30. Zeszyty Naukowe Akademii Morskiej w Gdyni, 83, 194-202.
Malinowska, M. (2017). Spectroscopic study and analysis of the content of residue elements in Marinol RG 1240 oil after working in various types of engines. Zeszyty Naukowe Akademii Morskiej w Gdyni, 100, 131-140.
Mattetti, M., Maraldi, M., Lenzini, N., Fiorati, S., Sereni, E., Molari, G. (2021). Outlining the mission profile of agricultural tractors through CAN-BUS data analytics. Computers and Electronics in Agriculture, 184, 106078.10.1016/j.compag.2021.106078
Napiórkowski, J., Gonera, J. (2020). Analysis of failures and reliability model of farm tractors. Agricultural Engineering, 24(2), 89-101.10.1515/agriceng-2020-0020
Sejkorová, M. (2015)a. Possibilities of processing the tribodiagnostic data. Perner’s Contacts, 10(4), 93–97.
Sejkorová, M. (2015)b. Tribotechnical diagnostics as a tool for effective management of maintenance. Perner’s Contacts, 10(3), 126-136.
Tomczyk, W., Kowalczyk, Z. (2016). The wear processes in the aspect of construction quality and the need to apply agricultural machines servicing. Journal of Research and Applications in Agricultural Engineering, 61(2), 114-119.
Wolak, A., Zając, G., Żółty, M. (2018). Changes of properties of engine oils diluted with diesel oil under real operating conditions. Combustion Engines, 73(2), 34-40.10.19206/CE-2018-206
Vähäoja, P., Välimäki, I., Roppola, K., Kuokkanen, T., Lahdelma, S. (2008). Wear Metal Analysis of Oils. Critical Reviews in Analytical Chemistry, 38(2), 67-83.10.1080/10408340701804434
Zając, G., Szyszlak-Bargłowicz, J., Słowik, T., Kuranc, A., Kamińska, A. (2015). Designation of Chosen Heavy Metals in Used Engine Oils Using the XRF Method. Polish Journal of Environmental Studies, 24, 2277-2283.10.15244/pjoes/58781