The Effect of Adjuvant Concentration on Changes of Spray Characteristics and Spraying Parameters for Selected Types of Nozzles
Main Article Content
Abstract
The paper presents the results of the research on the influence of the adjuvant concentration on the size of the drops produced by the spray nozzles of agricultural sprayers. For the tests, adjuvant Normaton with the composition of total nitrogen, amide nitrogen (N-NH2) and phosphorus pentoxide (P2O5) was used. The adjuvant was added to the water taken from the municipal water supply system of the city of Lublin. The tests were carried out for three concentrations, i.e. 75%, 100%, and 125% of the adjuvant concentration recommended by the manufacturer, and water without the adjuvant. The surface tension of water with adjuvant was examined for each nozzle. Then, the size of the obtained droplets was measured for each adjuvant concentration. Two types of nozzles were used for spraying, standard nozzle AP 120-03 and 6MSC injector nozzle, both with the same nozzle flow rate, but with a different design. The size of the droplets produced was measured on a HELOSVARIO laser diffractometer by Sympatec. The droplet measurement was performed at a pressure of 3 bar. The nozzle was placed 50 cm above the diffractometer laser light line. The droplet size was measured in three places of the sprayed liquid, i.e. in the position of the nozzle axis, 30 and 60 cm from the nozzle axis. It was shown that the addition of the adjuvant influenced the number of droplets produced in the indicated droplet size classes.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Chen, P., Lan, Y., Huang, X., Qi, H., Wang, G., Wang, J., Wang, L., Xiao, H. (2020). Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle. Agronomy, 10(2), 303.10.3390/agronomy10020303
Costa, L. L., Aquino, N. C., Carneiro, Â. L., Almeida, D. P., Ferreira, M. D. C. (2018). Insecticide spraying in soybean plants: Different nozzles models and agrometeorological conditions. Engenharia Agrícola, 38, 673-679.10.1590/1809-4430-eng.agric.v38n5p673-679/2018
Ferreira, P.H.U., Thiesen, L.V., Pelegrini, G., Ramos, M.F.T., Pinto, M.M. D., da Costa Ferreira, M. (2020). Physicochemical properties, droplet size and volatility of dicamba with herbicides and adjuvants on tank-mixture. Scientific Reports, 10(1), 1-11.10.1038/s41598-020-75996-5
Fritz, B.K., Hoffmann, W.C. (2016). Measuring spray droplet size from agricultural nozzles using laser diffraction. JoVE (Journal of Visualized Experiments), (115), e54533.10.3791/54533
Hansen, F.K., Rødsrud, G. (1991). Surface tension by pendant drop: I. A fast standard instrument using computer image analysis. Journal of colloid and interface science, 141(1), 1-9.10.1016/0021-9797(91)90296-K
Hołownicki, R., Doruchowski, G., Świechowski, W., Konopacki, P., Godyń, A. (2021). Effect of Nozzle Type and Adjuvants on Spray Coverage on Apple Leaves. Agronomy, 11(9), 1790.10.3390/agronomy11091790
Kalantarian, A., Saad, S. M., Neumann, A. W. (2013). Accuracy of surface tension measurement from drop shapes: The role of image analysis. Advances in colloid and interface science, 199, 15-22.10.1016/j.cis.2013.07.00424018120
Krawczuk, A., Parafiniuk, S., Przywara, A., Huyghebaert, B., Rabier, F., Limbourg, Q., Mostade, O., Kocira, S. (2021). Technical parameters of biostimulant spraying a determinant of biometric traits and yield of soybean seeds. Agricultural Engineering, 25.10.2478/agriceng-2021-0014
Lopes, D.L., dos Reis, E.F. (2020). Spectrum of spray droplets with different nozzles and adjuvants. Revista Brasileira de Ciencias Agrarias, 15(2), 1-6.10.5039/agraria.v15i2a6552
Marubayashi, R.Y., Oliveira, R.B.D., Ferreira, M.D.C., Roggia, S., Moraes, E.D.D., Saab, O.J. (2021). Insecticide spray drift reduction with different adjuvants and spray nozzles. Revista Brasileira de Engenharia Agrícola e Ambiental, 25, 282-287.10.1590/1807-1929/agriambi.v25n4p282-287
Meng, Y., Lan, Y., Mei, G., Guo, Y., Song, J., Wang, Z. (2018). Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control. International Journal of Agricultural and Biological Engineering, 11(5), 46-53.10.25165/j.ijabe.20181105.4298
Martins N.R., Freitas, M.A.M.D., Lima, A.D.C., Furtado Junior, M.R. (2021). Effect of nozzle type and pressure on spray droplet characteristics. Idesia (Arica), 39(1), 101-107.10.4067/S0718-34292021000100101
Sijs, R., Bonn, D. (2020). The effect of adjuvants on spray droplet size from hydraulic nozzles. Pest Management Science, 76(10), 3487-3494.10.1002/ps.5742754047031943769
Sijs, R., Kooij, S., Bonn, D. (2021). How surfactants influence the drop size in sprays from flat fan and hollow cone nozzles. Physics of Fluids, 33(11), 113608.10.1063/5.0066775
Song, B., Springer, J. (1996). Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing: 1. Theoretical. Journal of colloid and interface science, 184(1), 64-76.
Stauffer, C.E. (1965). The measurement of surface tension by the pendant drop technique. The journal of physical chemistry, 69(6), 1933-1938.10.1021/j100890a024
Yao, W., Lan, Y., Hoffmann, W.C., Li, J., Guo, S., Zhang, H., Wang, J. (2020). Droplet size distribution characteristics of aerial nozzles by bell206l4 helicopter under medium and low airflow velocity wind tunnel conditions and field verification test. Applied sciences, 10(6), 2179.10.3390/app10062179