Impact of Pressure on the Parameters of Pea Straw Compaction

Main Article Content

Ryszard Kulig
Grzegorz Łysiak
Zbigniew Krzysiak
Monika Wójcik
Renata Różyło

Abstract

This paper presents the results of pea straw compaction efficiency tests. The compliance of the tested material to pressure agglomeration was assessed depending on the compaction pressure used (45-113 MPa). The compaction was carried out using a Zwick testing machine, type Z020/TN2S, and a closed die pressing unit. It was found that, along with the pressure increase, the material density in the chamber increased (from 1.255 to 1.76 g∙cm−3), as well as the agglomerate's density (from 0.739 to 1.05 g∙cm−3) and the product's mechanical resistance (from 0.31 to 0.69 MPa). Increasing the compaction pressure in the analyzed range increased the unit value of compaction work, from 17.16 to 34.27 J·g−1.

Article Details

How to Cite
Kulig, R., Łysiak, G., Krzysiak, Z., Wójcik, M., & Różyło, R. (2019). Impact of Pressure on the Parameters of Pea Straw Compaction. Agricultural Engineering , 23(3), 79-87. https://doi.org/10.1515/agriceng-2019-0028
Section
Articles

References

Adamczyk, F., Frąckowiak, P., Mielec, K., Kośmicki, Z. (2005). Problematyka badawcza w procesie zagęszczania słomy przeznaczonej na opał. Journal of Research and Application in Agricultural Engineering, 50(4), 5-8.

Adamczyk, F., Frąckowiak, P., Mielec, K., Kośmicki, Z., Zielnica, M. (2006). Badania eksperymentalne procesu zagęszczania słomy metodą zwijania. Journal of Research and Application in Agricultural Engineering, 51(3), 5-10.

Danish, Z., Wang, Z. (2019). Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Science of the Total Environment, 670, 1075-1083.

Hejft, R. (2002). Ciśnieniowa aglomeracja materiałów roślinnych. Politechnika Białostocka. Wyd. i Zakład Poligrafii Instytutu Technologii Eksploatacji w Radomiu.

Kulig, R., Skonecki, S. (2011). Wpływ wilgotności na parametry procesu zagęszczania wybranych roślin energetycznych. Acta Agrophysica, 17(2), 335-344.

Kulig, R., Skonecki ,S., Łysiak, G., Laskowski, J., Rudy, S., Krzykowski, A., Nadulski, R. (2013). The effect of pressure on the compaction parameters of oakwood sawdust enhanced with a binder. Teka Commission of Motorization and Energetics in Agriculture, 13(1), 83-88.

Kulig, R., Skonecki, S., Gawłowski, S., Zdybel, A., Łysiak, G. (2013). Oddziaływanie ciśnienia na efektywność zagęszczania trocin wybranego drewna miękkiego. Acta Scientiarum Polonorum. Technica Agraria, 12(1-2), 31-40.

Kulig, R., Łysiak, G., Skonecki, S., Kobus ,Z., Rydzak, L., Guz, T. (2014). Określenie zależności między ciśnieniem a parametrami zagęszczania wybranych roślin energetycznych. Motrol – Motoryzacja i Energetyka Rolnictwa, 16(1), 55-58.

Kwaśniewski, D., Kuboń, M. (2016). Efektywność ekonomiczna produkcji peletów ze słomy zbóż. Agricultural Engineering, 20(4), 147-155.

Laskowski, J., Skonecki, S. (2001). Badania procesów aglomerowania surowców paszowych – aspekt metodyczny. Inżynieria Rolnicza, 2(22), 187-193.

Li, Y., Liu, H. (2000). High pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19(3), 177-186.

Lisowski, A., Matkowski, P., Dąbrowska, M., Piątek, M., Świętochowski, A., Klonowski, J., Mieszkalski, L., Reshetiuk, V. (2018). Particle Size Distribution and Physicochemical Properties of Pellets Made of Straw, Hay, and Their Blends. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-018-0458-8.

Mani, S., Tabil, L.G., Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7), 648-654.

Mao, G., Huang, N., Chen, L., Wang, H. (2018). Research on biomass energy and environment from the past to the future: A bibliometric analysis. Science of the Total Environment, 635, 1081-1090.

Relova, I., Vignote, S., León, M. A., Ambrosio, Y. (2009). Optimisation of the manufacturing variables of sawdust pellets from the bark of Pinus caribaea Morelet: Particle size, moisture and pressure. Biomass and Bioenergy, 33, 1351-1357.

Ruiz, G., Ortiz, M., Pandolfi, A. (2000). Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. International Journal for Numerical Methods in Engineering. 48, 963-994.

Skonecki, S., Kulig, R. (2011). Wpływ wilgotności biomasy roślinnej i nacisku tłoka na parametry brykietowania i wytrzymałość aglomeratu. Autobusy, Technika, Eksploatacja, Systemy transportowe, 10, 375-386.

Whittaker, C., Shield, I. (2017). Factors affecting wood, energy grass and straw pellet durability – A review. Renewable and Sustainable Energy Reviews, 71, 1-11.

Zdanowska, P., Florczak, I., Słoma, J., Tucki, K., Orynycz, O., Wasiak, A.L., Świć, A. (2019). An Evaluation of the Quality and Microstructure of Biodegradable Composites as Contribution towards Better Management of Food Industry Wastes. Sustainability, 11(5), 1504.