Evaluation of Thermal Insulation of the Gastronomic Refrigeration Furniture Prototype

Main Article Content

Tomasz Bernat

Abstract

An innovative method of insulation by injection to a cooling tank was investigated with consideration of a sustainable development need during production of thermo-insulation materials. An insulation material consisted of polyurethane foam. The manufacturer has chosen HFO gases for filling in the pores, since this is a product with a low environmental impact. HFO gases have a zero potential for destruction of the ozone layer and an extremely low global warming potential. Cooling tanks insulated with modern technologies of injection of polyurethane foam were investigated with regard to heat permission. They were also tested on account of occurrence of heat leakage bridges. The investigation covered also cooling furniture insulated with a conventional method of gluing ready-made polyurethane boards. The tests showed that a modern insulation technology influences reduction of the heat permission coefficient towards the presently applied technology. The investigated insulation of cooling furniture did not prove any heat leakage bridges. Therefore, it may be concluded that the technological process is correct. Cooling tanks manufactured in the present insulation technology did not show the occurrence of heat leakage bridges.

Article Details

How to Cite
Bernat, T. (2021). Evaluation of Thermal Insulation of the Gastronomic Refrigeration Furniture Prototype. Agricultural Engineering , 25, 83-98. https://doi.org/10.2478/agriceng-2021-0007
Section
Articles

References

Adamczyk-Królak, I. (2015). Aerożele i pianki poliuretanowe – nowoczesne materiały termoizolacyjne w budownictwie. Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 2, 9-14.

Bernat, T., Bieńczak, K. and Bogusławski, L. (2019). Description of energy balance for selected refrigeration furniture. Journal of Research and Applications in Agricultural Engineering, 2, 11-14.

Bieńczak, A., Ignasiak, Ł. and Woźniak, P. (2020). Building of calculation model and strength analysis by using finite element method on example of mold to foaming of cooling furniture. Journal of Research and Applications in Agricultural Engineering, 1, 4-8.

Bieńczak, K., Leszek, W., Nosal, S., Rochatka, T., Stachowiak, A., Tyczewski, P. and Zwierzycki, W. (2004). Fizyczne podstawy diagnostyki układów termoizolacyjnych do transportu żywności. Radom: ITE.

Brodt, K. (1995). Thermal insulations: CFC-alternatives and vacuum insulation. Leiden: Delft university of technology - Netherlands.

Geryło, R. (2015). Nowoczesny standard energetyczny budynków. Poradnik. Warszawa: POLCEN Sp. z o.o.

Góral, D., Kluza, F. i Kozłowicz, K. (2013). Bilans strat ciepła naczepy chłodniczej jako podstawa do prawidłowego doboru agregatu chłodniczego. Acta Scientiarum Polonorum. Technica Agraria, 12(11-22), 21-30.

Góral, D., Kozłowicz, K., Kluza, F., Domin, M., Blicharz-Kania, A., Senetra, E., Dziki, D., Kocira, A. and Guz, T. (2018). Evaluation of thermophysical characteristics of freeze-dried protein foams as packaging material for frozen food. Przemysł Chemiczny, 5, 700-705.

Honeywell International Incorporation. (2021). Honeywell Refrigerants. Downloaded from location https://www.honeywell-refrigerants.com/europe/wp-content/uploads/2018/11/Honeywell-Solstice®-zd-Brohcure_EN.pdf (Available: 10 May 2021)

Incropera, F.P. and DeWitt, D.P. (2002). Fundamentals of heat and mass transfer. Hoboken, USA: John Wiley & Sons.

Jarfelt, U. i Ramnäs, O. (2006). Thermal conductivity of polyurethane foam - best performance. 10th International Symposium on District Heating and Cooling. Gotebörg. https://www.lsta.lt/files/events/28_jarfelt.pdf (Available: 10 may 2021)

Khalifa, A.J., Mustafa, A.T. and Khammas, F.A. (2011). Experimental Study of Temperature Stratification in a Thermal Storage Tank in the Static Mode for Different Aspect Ratios. ARPN Journal of Engineering and Applied Sciences, 6, 53-60.

Kozłowicz, K., Nazarewicz, S., Góral, D., Krawczuk, A. and Domin, M. (2019). Lyophilized Protein Structures as an Alternative Biodegradable Material for Food Packaging. Sustainability, 11(24), 7002.

Kuhn, J., Ebert, H.P., Arduini-Schuster, M. C., Buttner, D. and Fricke, J. (1992). Thermal transport in polystyrene and polyurethane foam insulations. International Journal Heat Mass Transfer, 35(7), 1795-1801.

Machado, C.M., Benelli, P. and Tessaro, I.C. (2017). Sesame cake incorporation on cassava starch foams for packaging use. Industrial Crops and Products, 102, 115-121.

Moreno, J.D. (1991). Radiative Transfer and Thermal Performance Levels in Foam Insulation Board-stocks. Massachussetts: B.S.C.E. Stanford University Massachussetts Institute of Technology.

Ostrorsky, A.G., Glicksman, L.R. and Reitz, D.W. (1986). Aging of polyurethane foams. International journal Heat Mass Transfer, 29(8), 1169-1176.

Page, M.C. (1991). Effects of alternating blowing agents on the aging of closed cell foam insulation. Massachussetts: B.S.C.E. Stanford University Massachussetts Institute of Technology.

Perz, K. (2005). Analiza przyczyn uszkodzeń płyt termoizolacyjnych w komorach chłodniczych. Problemy Eksploatacji, 1, 99-105.

Perz, K., Mamoński, Ł. and Rewolińska, A. (2018). Wpływ barwy nadwozia chłodniczego na jego parametry cieplne. Autobusy: technika, eksploatacja, systemy transportowe, 12, 589-592.

Pietruszka, B.L. (2012). Aerożele krzemionkowe jako komponent nowoczesnych izolacji cieplnych. Izolacje, 10, 20-23.

Prazner, Ł., Kozłowicz, K. and Podsiadło, H. (2017). Zmodyfikowane struktury żelatynowe – alternatywny materiał na opakowania żywności. Badanie właściwości termofizycznych i mechanicznych. Przemysł Spożywczy, 71(9), 58-62.

Rochatka, T. (2018). Analiza błędów konstrukcyjnych, technologicznych oraz eksploatacyjnych nadwozi izotermicznych i chłodniczych. Autobusy: technika, eksploatacja, systemy transportowe, 12, 615-619.

Rochatka, T. (2019). Measurements of heterogeneous heat streams permeating through damage to refrigerated bodies. Journal of Automation, Electronics and Electrical Engineering, 1, 23-27.

Sobolewski, M. and Błażejczyk, A. (2014). Thermal performance of high-pressure one-component foam in spray. Part 1. Properties and application of polyurethane foams. Izolacje, 11-12, 69-72.

United Nations Treaty Collection. Chapter XXVII 2.a Montreal Protocol on Substances that Deplete the Ozone Layer. (1987).

Vargas-Torres, A., Palma-Rodriguez, H.M., Berrios, J. D., Glenn, G., Salgado-Delgado, R., Olarte-Paredes, A. and Hernandez-Uribe, J.P. (2017). Biodegradable baked foam made with chayotextle starch mixed with plantain flour. Journal of Applied Polymer Science, 134, 455-465.

Wiśniewski, S. and Wiśniewski, T.S. (2000). Wymiana ciepła. Warszawa: Wydawnictwa Naukowo - Techniczne.